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1  INTRODUCTION 
 
One of the major trends in recent years has been an explosion in the volume of data being collected from sources 
such as ground, air, and space based sensors. Currently, there is more data being generated than can be analyzed in 
real time. The DoD Image Understanding program cites a metric known as the pixel-to-pupil ratio to express the 
widening gap between the amount of data being gathered and the number of analysts available to examine it. 
Technological solutions are being sought that provide for greater levels of computer assisted data analysis, wider 
access through high bandwidth networks, and high volume data storage facilities. 
 

Optical memory systems have the potential to provide some of the necessary data storage capacity, but significant 
technical issues exist with regard to the access, retrieval and distribution of this data. For example, individual sensor 
types within a composite image may generate data in incompatible formats. These formats need to be converted, the 
data registered over multiple images, and fused into a single view. It is often necessary to extract features, make 
comparisons, and highlight variations between current sensor data and archival copies of an image, data from other 
sources, or even a computer model. These are compute intensive applications, which require that very high volumes 
of data be delivered to the processing site. With the use of a page oriented optical memory system, such high volume 
transfer rates can be achieved.  

1.1 SPECIFIC ACCOMPLISHMENTS 
 
The goal of this research was to facilitate an end-to-end demonstration of data transfers from a page oriented 

optical memory to a program executing on a desktop personal computer. In a previous contract, F30602-96-C-0206, 
we designed and implemented an optoelectronic cache memory and interface to a page oriented optical memory 
system. Those results demonstrated that an optical memory can be tightly integrated into a conventional computer 
and that its high spatial bandwidth can be successfully exploited when optical memories are used as a backing store1. 
In this project, we have implemented low-level signal processing primitives to improve the density and reliability of 
this storage system. We are reporting on three specific accomplishments. First, we have developed a novel 2D coding 
system for managing inter-symbol interference in page-oriented memory. Second, in direct support of the prototype 
implementation we have implemented software and firmware implementations of spectral Reed-Solomon error 
correcting codes as well as clock extraction, noise filters, and 5-7 coder firmware.  Third, we have also investigated 
“transaction oriented” processing primitives that might be implemented at the storage interface to improve utilization 
of the high transfer rate data.  Each of these activities is summarized below, followed by a detailed technical 
overview in the next section. 

 

1.1.1 Novel 2D Dynamic Channel Codes 
Data reliability is an essential requirement for any memory system. There are a few factors for optical memories that 
may corrupt the data while being recorded, retained or read out from the optical memory. For example, the readout 
system and the material noise, optical effects such as reflection, diffusion, and inter-pixel crosstalk due to additive 
noise in gaussian amplitude. Mechanical noise sources are also present, such as jitter due to positioning the readout 
mechanism or the optical media. 
 
The data reliability is typically ensured by using error correcting codes and media-specific data modulation. This part 
of the project was focused on the modulation schemes. Error correcting codes have a common characteristic that 
reliability is achieved at the cost of code density. For example, magnetic storage devices use encoding schemes such 
as EFM (eight to fourteen) modulation, which results in low utilization, 43% of the media is lost to overhead. There 
are several data encoding schemes proposed for page-oriented memories, such as array codes2 and crosstalk 
minimization3,4. However, just like their counterparts from magnetic storage they also suffer from very low 
utilization of the media. 
 
There are a variety of factors that can limit the set of allowable code words that are useable on an optical memory 
block. In this report, we will primarily consider inter-symbol interference (ISI) and the noise margins required to 
represent an individual bit. For example, code words must maintain a specific topological separation of “1” bits so 
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that ISI does not raise the intensity of neighboring “0”’s above a pre-set threshold. Typically this is accomplished by 
a static encoding that uses a pre-selected set of code words based on these properties of the storage media and the 
optical system. Alternatively, our approach provides for a dynamic analysis of all data currently stored in the region 
surrounding a particular block and defines the allowable code words uniquely for each block. 
 
We assume the existence of a “smart” read head that is capable of analyzing a page of data and calculating the 
allowable codes in real-time based on the actual data in the surrounding region. We use point-spread function based 
mathematical model for optical readout system to evaluate and carry out data encoding. Our experiments show 81% 
spatial utilization while recent publications present only 45% utilization. 
 

1.1.2 Software and Firmware Reed Solomon ECC Code 

The error correcting code (ECC) that we have chosen to implement in the prototype firmware is the Spectral 
Reed-Solomon (SRS) code. Several characteristics of this code make it well suited to optical memory applications. 
Specifically, it has a high tolerance for burst errors such as those which might be introduced by defects in a material 
and it is scalable, either by increasing the size of the code word for better error correction performance or by 
processing multiple code words in parallel for a higher aggregate data rate. Although the decoder has significant 
computational requirements, it can be implemented using pipelined processing techniques to achieve high 
throughput.  

Our research in this area has focused on the theory, implementation and performance of a spectral Reed-Solomon 
decoder for use in the optical memory prototype. We will present a general discussion of Reed-Solomon codes and 
the finite field algebra on which they are based in the next section along with details of the implementation and 
performance data from simulations based on timing extracted from the FPGA designs. 

 

1.1.3 Transaction Level Codes for Application Oriented Storage 
High data transfer rates for specific applications can be handled by moving computational power to the interface 

and implementing a transaction oriented storage system. Feasibility of such system was another part of our research. 
We developed transaction level firmware for ray-tracing application. The firmware is executed on a set of field 
programmable gate arrays, which can be reconfigured according to the computation demands. The main goal for 
such approach is to provide high performance demanded by certain applications, such as real time ray tracing. 

In ray tracing application a model of a virtual world is defined as a set of objects. The code, which we have 
developed, together with sufficient hardware allows rendering the objects in real time by generating ray-traced image 
frame. Providing sufficient number of frames can be computed in each second, it is possible to render the world as if 
it is filmed with a video camera. 
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2 TECHNICAL OVERVIEW 

2.1 NOVEL 2D DYNAMIC CHANNEL CODES 
 
Data reliability is essential requirement for any memory system. There are a few factors for optical memories that 
may corrupt the data while being recorded, retained or read out from the optical memory. For example, the readout 
system and the material noise, optical effects such as reflection, diffusion, and inter-pixel crosstalk due to additive 
noise in gaussian amplitude. Mechanical noise sources are also present, such as jitter due to positioning the readout 
mechanism or the optical media. 
 
The data reliability is typically ensured by using error correcting codes and media-specific data modulation. Our 
research is focused on the modulation schemes. Error correcting codes have a common characteristic that reliability 
is achieved at the cost of code density. For example, magnetic storage devices use encoding schemes such as EFM 
(eight to fourteen) modulation, which results in low utilization, 43% of the media is lost to overhead. There are 
several data encoding schemes proposed for page-oriented memories, such as array codes5 and crosstalk 
minimization3,4. However, just like their counterparts from magnetic storage they also suffer from very low 
utilization of the media. 
 
One reason for utilization being so low in these codes is that code words are assigned statistically taking in account 
the worst-case scenario. In our approach we assign codes dynamically by taking advantage of the fact that the whole 
memory page is available to us for encoding and decoding. Specifically we are able to consider the actual data on 
regions of each page and compute the codes dynamically.  We assign codes that maximize utilization while 
satisfying the system constraints. Therefore we assume intelligence in the read/write head with ability to process 
information at the source in real time. The result will be higher code densities and therefore higher media utilization 
while retaining the same reliability level of the data. We can also expect better performance due to parallel 
information processing. 

2.1.1 Problem Statement 
A typical setup for a two-photon optical memory5,6 is shown in Figure 1. The data is read from memory in pages. The 
page addressing laser beam is shaped to a sheet of light and targeted to the memory page we want to read. The 
storage media is transparent to the laser light. The 3D pixels (voxels) that represent value ‘1’ are exited by the laser 
light and fluoresce. The optical readout system projects the image to the detector array and decoding system. Each 
pixel in the 2D page has a light intensity. The system uses an intensity threshold for each pixel value. 
 
 

 

Figure 1: Two-photon optical memory 
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Several effects can result in corrupted information during readout: 
 

• Inter Symbol Interference. The light output for each pixel almost always contributes some optical power to 
neighboring pixels on the detector array. This type of crosstalk should be minimized by the optical system, 
however a cluster of “1” pixels near a “0” pixel can produce enough crosstalk power such the “0” is 
detected in error as above threshold. 

 
• Weak ones. If a ‘1’ pixel is surrounded by many ‘0’ pixels, and the readout threshold is fairly high, the ‘1’ 

pixel may be too week to read out as “high” bit. 
 
• Misalignment and jitter. The readout head, laser or the media may not be aligned perfectly due to 

mechanical nature of addressing a page. Therefore the image may be slightly shifted and pixels may lack 
some intensity or contribute some intensity to their neighbors.  

 
     

   
a) Binary data b) Detector image c) Sampled image 

Figure 2: Raw data images 

 
We will collectively refer to the combined effect of each of the three mechanisms as noise in the optical system. 
Figure 2 illustrates this with three versions of 32x32 bit image: a) the binary data written to memory; b) image as the 
detector array sees it and c) image as the detector array samples it. No matter what threshold you apply there is likely 
to be significant number of noise induced errors to the image between Figure 2b and Figure 2c. 
 
In order to correctly detect ones and zeroes from the sampled image the relative intensity of each pixel must be 
clearly distinguishable according to value the pixel holds. To measure this relative intensity we gather statistics for 
each of the pixels on a page and plot a histogram of the number of pixels at each intensity. An example of one such 
histogram is shown in Figure 3. The two regions in this picture represent histograms for zeroes and ones. We observe 
that the regions overlap between intensities A and B. Thus in this region the same intensities may be interpreted as 
either ‘0’ or ‘1’, which results in unreliable data.  
 
The goal of this research is to attain a histogram similar to Figure 4. The encoding should manipulate data so that the 
intensity values for ‘0’ and ‘1’ are sufficiently below or above our detection threshold T. This is achieved by 
ensuring that there is sufficient spatial separation between ones and zeroes on a 2D code block to limit the noise 
effects. 
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Count 

Intensity 

A B 

  

Figure 3: Raw data graph Figure 4: Noise margins 

2.1.2 Approach 
In this section we describe our mechanism for generating dynamic codes that minimize inter symbol interference 
(ISI) and other system noise. Specifically, ISI can cause a ‘0’ pixel (that has many neighboring ‘1’ pixels) to become 
“too bright”. Similarly if zeroes surround a ‘1’ pixel, it may become too weak to be correctly read as ‘1’. Therefore it 
will be a good idea to cluster ‘1’ pixels by placing them in close proximity. 
 
Since we cannot totally prevent system noise, we introduce “noise margin” as a parameter for our encoding. In this 
context the noise margin is a relative intensity above and below our detection threshold. Our encoding will provide 
that no pixels read between intensities A and B in the histogram of Figure 4. All “ones” will be encoded in such a 
way that their intensity should fall only above B, and “zeroes” only below A. The size of the noise margin is 
determined by the quality of the optics and memory system. Thus in realistic optical memory, if there will be 
additional intensity noise in the readout system, our encoding will tolerate it without loss of data correctness as long 
as it falls in the noise margin (A to T for zeroes and T to B for ones). 
 
Figure 5 shows a section of data page during the encoding operation. The 
page is partitioned in rectangular code blocks (CB). In this example the light 
gray CB is being encoded. The dark gray CBs have been encoded previously, 
and the white blocks are assumed to be all zeroes (i.e. no light sources) since 
they will be subsequently encoded. 

 
We start with a blank page. The first CB to be encoded is the left-top most. 
There are no CBs to its left or above since it is beyond page boundary, 
therefore we assume zeroes there. We subsequently encode the whole line 
block by block and page line by line. Based on the surrounding data we 
compute intensity values and then valid codes for the CB to be encoded that 
will minimize cross talk and be within set noise margins. Once the valid code 
set is enumerated we select the k-th code from the code set depending on 
source data.  
 
Decoding is done very similarly. We read digital data; compute intensities and valid code sets for each CB. The 
difference is that now we can use the code sets for reverse lookup of the encoded data from the read data. One 
advantage of the decoding is that it can be done in parallel for all CBs. The algorithm suggests reconfigurable mesh-
connected parallel architectures, such as our optically reconfigurable field programmable gate array, developed in 
our laboratory7. Also, left-to-right approach for page fill is not necessarily the best. Filling page in a random or 
uniform order may actually yield better results. 
 
There are several ways that we can generate valid codes for CBs. The most effective from the code density point of 
view is to enumerate all possible codes that do not violate noise margins. Unfortunately the worst time complexity 

11001 
00101 
01010 

01011 
11010 
11011 

10111 
10011 
11010 

10101 
10001 
11000 

????? 
????? 
????? 

00000 
00000 
00000 

00000 
00000 
00000 

00000 
00000 
00000 

00000 
00000 
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Figure 5: Encoding scheme 
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for full enumeration approach is order of 2N-1 where N is the number of bits in a CB. The central focus of this 
research is to devise alternative algorithms that exploit topological properties and heuristics that are both efficient 
and well suited to parallel processing architectures. 
 

2.1.3 Memory Model 
We evaluate our encoding performance on two-photon volumetric optical memory model, described above. The 
evaluation of the encoding for other types of volumetric memories such as holography8,9 and spectral hole burning is 
possible with adjustment of the model parameters and formulas to the chosen technology.  
 
The optical memory storage is organized in 2D pages. The size and number of pages is a parameter of the model and 
we have run experiments for 64x64, 128x128 and 256x256 sized pages. To model the readout of the memory page 
the model computes an image that represents light intensities received by the readout detector array. Each of the light 
source intensities is computed to model light distribution assuming square aperture using the continuous point-spread 
function (PSF): 
 
 H(x, y) = 1/s 2 sinc2(x/s, y/s) 
 
Where s is a parameter that models the degree of blur in the system, and  

sinc(x, y) = sin(px)/px  * sin(py)/py 
 
The optical memory page image is then generated using 2D convolution operator ? on binary data stored in the page 
and the PSF function. 

r[i, j] = a[i, j] ? h[i, j] + noise[i, j] 
 
where r[i, j] is the resulting intensity, a[i, j] is the source binary data, noise[i, j] is additive white Gaussian noise and 
h[i, j] is the effective discrete PSF computed as follows: 
 h[i, j] = ?? h(x, y) dxdy   for each square [i, j] of PSF matrix. 
 
The surface integral is approximated with discrete over-sampling method using 64x64 samples per pixel. The binary 
output is determined by simple threshold on intensities. The degree of blur represents the quality of the optical 
system and is set at 1.4. 
 
For optimization purposes we pre-compute discrete PSF matrix. We limited the dimensions of the matrix to 11x11 
with the light source at the center. For every pixel beyond the dimensions of the matrix the additive intensity is 
assumed to be null, i.e. insignificant. This improved performance of the simulation system without significant loss of 
precision. 
 
We ran experiments using compressed zip file as a data source. It was chosen for the random distribution of 0 and 1 
bits due to data compression. Thus we may encounter wide variety of bit patterns (or else the file could be further 
compressed). 
 

2.1.4 Simulation Results 
In this section we first discuss the algorithm and then our experimental results. Our intention is to measure the 
improvement in utilization between conventional static encoding and our proposed dynamic encoding systems. We 
compute light intensity values and then build a valid code set for CB, which minimizes cross talk and complies with 
predefined noise margins.  
 
The straightforward approach is to try all possible patterns of CB and enumerate only the valid ones. Then a bit-
string from the source can be encoded using the enumeration as a lookup table. This takes about 2N computations per 
CB where N is the number of pixels in a CB. One could pre-compute the lookup table to speed up the process, 
however the table is huge even for reasonable N values. Even though this approach is computationally very intensive, 
it gives us empirical upper bound for maximum utilization we could expect with the dynamic encoding approach.  
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An alternative way to generate a valid code is to evaluate CB bit 
by bit and decide if it can assume both ‘0’ or ‘1’ values. When 
this is true, we take a bit from the source data; copy it to this 
location and move to the next bit. Otherwise we write zero 
(nothing) to this pixel and go to the next. This method is much 
faster (order of N), however it does not generate codes as dense 
as the full enumeration method. 
 
We ran both algorithms for different sizes of CB, starting 1x2 up 
to 5x5 bits. The histogram in Figure 6 shows that the noise 
margins are maintained and there is no significant ISI. The 
utilization for the enumeration algorithm was 49-81% (as shown 
in Figure 7) with higher utilization for larger CBs. We also 
noticed that “tall” CBs do not perform as well as “wide” ones. 
For the same number of bits in CB, square rectangles yielded 
better results than non-square. 
 
There are two interesting features shown in Figure 7. First, the best results for utilization are over 80%. This is much 
higher than reported results for static encoding, namely 45% for 4/9 modulation scheme3,4. This suggests that there 
may be modulation algorithms that will give good utilization and relatively low time complexity. The second feature 
is the trend of the surface to flatten out at CB sizes larger than 4x4. This suggests that it is not needed to go into large 
CB sizes to achieve good utilization results. Thus better time performance can be achieved for encoding schemes 
with smaller code blocks. 
 

 
Utilization results for various CB sizes. 

 
Y \ X 1 2 3 4 5 6 

1  49 62 65 68 72 
2 49 66 71 74 74 75 
3 61 72 74 77 81 76 
4 61 71 76 78 81  
5 57 73 77 80 80  
6 64 74 80    

 
Threshold: 0.40 
Noise margin: 0.03 
  

Figure 7: Full enumeration approach: Utilization vs. CB size 

 
Returning to Figure 6 the histogram for 4x4 CB version encoding simulation shows that noise margin is maintained 
and there are no ambiguously read bits, i.e. no destructive crosstalk. The code density was 78%. Figure 8 presents a) 
binary, b) detector and c) sampled images of memory page fragment after using 4x4 encoding. There are no single 
isolated dark dots surrounded by bright light as an effect of encoding and thus the crosstalk is minimized. Even the 
detector image b) seems to have better contrast the raw data image in Figure 2b. 
 
     

Count 

Intensity 

A B 

 

Figure 6: CB size 4x4 encoding results 
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a) Binary data b) Detector image c) Sampled image 

Figure 8: Encoded data images 

 
The bit-by-bit approach gave good speed results  while the utilization was between 55% and 60%. This algorithm 
slightly outperforms others recently published in terms of utilization. The algorithm’s time complexity is linear to the 
number of bits in a code block. All code blocks can be decoded in parallel. 
 
Another set of experiments determined how the dynamic encoding responds to parameter change. There are two 
parameters that influence the encoding: the threshold level and the noise margin. The experiments for the same input 
data set at different thresholds for 2x2 and 3x3 size code blocks generated the results in Figure 9. Some threshold 
values yield better utilization as others. The best utilization was 83% for the threshold value of 0.45 units of 
normalized light intensity. Even relatively small 2x2 blocks gave good utilization of 70%. 
 
More experiments for 2x2 and 3x3 size code blocks showed how well the encoding performs for different noise 
margins. In the ideal case maximally wide noise margin is desirable. Unfortunately the experiments in Figure 10 
show that the utilization drops quite steeply if we increase the noise margin over 0.04 units of normalized light 
intensity. 
 
 

  

Figure 9: Utilization vs. Threshold (NM=.03) Figure 10: Utilization vs. Noise margin (T=.45) 
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2.2 SOFTWARE AND FIRMWARE REED SOLOMON ECC CODES 
 

Reed-Solomon codes are a class of non-binary, linear block codes that offer multiple error correcting capability. 
They were first proposed in 196010 by the mathematicians for whom they are named. Since that time, many 
implementations of Reed-Solomon codes have been described in literature11,12,13,14. Of particular interest is recent 
work by Neifeld et al.15,16 which introduced the notion of spectral processing. The decoder described in this report 
has the same overall organization as the Neifeld16, and Blahut14 coding system. However, we have adapted the 
pipeline structure to provide for increased performance in a minimal area FPGA implementation. 

Unlike a binary code, a linear block code treats the data to be encoded as message block of k  symbols where each 
symbol is encoded in m-bits and represents an element of a finite field of size 2m . The codeword is built by 
appending (n-k) extra symbols to the message string to produce a block with a total length of n symbols. This nxm-bit 
word is referred to as an (n,k) Reed-Solomon (RS) code and has random error correction capability t = (n-k)/2 
symbols. In the FPGA implementation a sixteen element field was chosen yielding m=4, n=15 and k=9 and a 60-bit,  
(15,9) RS code word.  

A finite field is a discrete set of symbols with operations, * (multiplication) and + (addition), over those symbols 
that define a well-behaved algebra. In our implementation we make use of the finite field GF(24) which is 
constructed from the elements 0 (additive identity), 1 (multiplicative identity), and α, α2, ..., α14, where α is the root 
of special generating polynomial, P(x), of degree m which called a primitive polynomial. The choice of primitive 
polynomial determines the mapping of elements of GF(24) into four bit symbols.  Our choice of P(x) = x4 + x + 1 
yields the following symbol alphabet for GF(16): 

0 0000 α3 0001 α7 1101 α11 0111 
1 = α0 1000 α4 1100 α8 1010 α12 1111 

α 0100 α5 0110 α9 0101 α13 1011 
α2 0010 α6 0011 α10 1110 α14 1001 

 

Addition of two symbols in GF(24) is obtained by a bitwise XOR of the bit-encoded representations of the symbols 
involved.  Multiplication of two symbols in the field is defined as  
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The periodicity of the generating polynomial defines the Finite Field Fourier Transfer (FFFT) operation and its 
inverse (FFFT-1) which are used to encode and decode codewords in a Spectral Reed-Solomon code . These 
operations map sets of n = 24 - 1= 15 symbols between the data (or temporal) space and the spectral (or frequency) 
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spectral space and the FFFT-1 will take a vector of symbols V in spectral space and compute the vector v in temporal 
space according to: 
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The specifics of the encoding and decoding operations are shown in Figure 11. An n-symbol unencoded data word 
is assumed to consist of k data symbols and n-k  check symbols. The n-k  check symbols are initially set to the zero 
symbol, the additive identity element in the field. For coding purposes, the entire string of symbols is interpreted as a 
vector, V, in the spectral domain. The encoding operation is an inverse Finite Field Fourier Transform which 
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produces a vector of symbols, v, in the temporal domain. This is the encoded data word that is stored in the memory 
system. 

After being stored and retrieved, the data is processed by the multi-stage decoding and correction logic. The 
decoding step consists of a forward FFFT to restore the original spectral data vector. If errors were introduced during 
storage and retrieval, the error can be represented in temporal space as a vector e such that the received vector v is the 
(finite field) sum of code word d and error vector e.  

v = d + e 

After decoding, the linearity property of the FFFT operation provides that: 

V = D + E 

also holds in the spectral domain. However, since six of the D terms in the original code word were appended as zero 
constants, the symbols in this portion of the code word represent elements in the error vector only. These non-zero 
elements in the check portion of the retrieved vector V are the starting point for the correction algorithm. The goal of 
the correction algorithm is to calculate the remaining elements in the error vector E, such that when these elements 
are added to the elements of V, the original data is restored.  

The first stage of error correction calculates the coefficients of a function called the error locator polynomial. The 
error locator polynomial, Λ(x), is defined such that if an error, ei, occurs at location i in the temporal space then α-i  is 
one of its roots. Due to the way in which Λ(x) is defined, the inverse FFFT of this polynomial, λ(x) = FFFT-1(Λ(x)), 
has the very important property that }10{,0* −∈∀= nie ii Κλ .  Application of the convolution theorem results 

in this set of n equations, which can be used to determine the coefficients of  Λ and the unknown components of E: 
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Figure 11: Reed Solomon Coding and Decoding Process  
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There will exist a subset of t of these equations which contain only the 2*t known components of E and the t + 1 
coefficients of Λ. Making use of the fact that Λ0 = 1, this reduces to a system of t equations with t unknowns which 
can be solved for the values of Λ1, …, Λt. This solution can be obtained through several different methods, our choice 
being the iterative Berlekamp -Massey (BM) algorithm.  

Once the error locator polynomial has been calculated, the Λ coefficients can be used with the remaining 
equations from convolution result to calculate the unknown symbols of E in a process known as recursive extension 
(RE). The RE stage determines the remaining terms of the error vector by stepwise solution of the remaining 
equations, producing one new term per equation. Finally the each of calculated terms  in the error vector is added 
(equivalent to subtraction in a finite field) to the retrieved data to regenerate the original data. 

2.2.1 Spectral Reed Solomon Decoder Implementation 
In this section, we describe the implementation of a Spectral RS decoder in a single Xilinx XC4036EX, field 
programmable gate array (FPGA) device. As we mentioned above, this is a firmware solution that allows different 
versions of the software to be loaded as necessary for testing, debugging, and optimizing alternate configurations. 
The circuitry itself is designed in  VHDL (VHSIC Hardware Description Language), which provides for a textual 
description of the algorithm much like a conventional programming language. Software tools synthesize the logic 
directly from this description and place and route tools map the logic into the combinational logic blocks (CLB's) and 
interconnection network of the FPGA. 

2.2.1.1 FFFT Implementation 

As explained above the k-th symbol of the FFFT is computed from:  

where the operations for multiplication and addition are defined by the finite field algebra. In GF(24), where each 
symbol consists of four bits, these operations are defined by a combinational logic function of 8 inputs and 256 
outputs. While addition is easily implemented as a bit-wise XOR operation, multiplication cannot be readily 
minimized and requires over 30 gates, (5 CLB’s in an FPGA) to implement. Although the most obvious realization 
of the FFFT operation is to compute Vi  by a multiplication addition tree, this would require some 225 multipliers and 
would consume most of the capacity of available reconfigurable logic devices. However, unlike a conventional FFT 
operation, finite field FFT's can be implemented such that one of the two input symbols, αi•k, is known a-priori for 

+ +
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+
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Figure 12: One Row of the Pipelined Computation Array 
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each of the 15 multiply operations of the k-th term. Thus, each of these multiply operations can be implemented as a 
4 input, 16 output function which can be implemented in 2 CLB’s. Using these simpler multiply operations, the 
multiply-add circuitry for the k-th term can be built as shown in Figure 12. Note that Figure 12 shows only a part of 
one row from the overall FFFT computation array. For a (15,9) code, that array consists of 15 rows and 15 columns, 
each column corresponding to an input term in v and each row being summed to compute a term in V. 

To complete the implementation of the FFFT, two remaining issues need to be resolved. In the first case, pipeline 
registers must be added in order to meet timing specifications. These are arranged in two groups, one group along the 
rows of the FFFT array such that a new partial sum for each term in V is computed in each clock cycle, and another 
group that buffers the input code word to delay the input of each v term until the partial sum has propagated to the 
corresponding column. For example, in the first clock cycle, v0 is broadcast to all of the multiply/adder stages in 
column 0 all of the partial product/sums requiring this term are calculated and buffered in pipeline registers between 
column 0 and 1. In the next clock cycle, the partial sums are accumulated with terms computed from v1 in column 
one and stored in pipeline registers between columns one and two. Thus, it is necessary to delay the entry of the v1 
term in the FFFT array until the second clock cycle. Note also that in the second clock cycle, the v0 terms for a 
different code word are being computed simultaneously. In fact, this configuration of the pipeline computes one 
partial result for each of 15 different code words on each clock cycle. After an initial delay to fill the pipeline, a new 
code word enters the pipeline and completed one exits on each clock cycle. 

2.2.1.2 Berlekamp Massey Implementation 
The 2t known error values from the FFFT output are used as the input to the Berlekamp -Massey(BM) stages which 
will iteratively solve for the error locator polynomial.  A typical BM stage consists of the logic blocks shown in the 
inset to Figure 13.  It will read up to three of the known error values from the left pipeline register as well as the 
previous values of Λ, B, and L from the right pipeline register, calculate the intermediate quantities ∆ and δ, and use 
this information to refine the value of Λ and determine the new values of B and L. The values of Λ, B, and L input to 
the first stage are fixed so that after 2t interations, the output value of Λ will contain the true error locator 
polynomial.  
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Figure 13: Berlekamp -Massey Solver Implementation Figure 14: Recursive Extension 
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The dominant hardware requirements for the BM stages will be the GF multipliers and inverters.  Some properties 

of the error locator polynomial can help us to characterize the number of such components needed.  First,  the 
maximum degree of  Λ is t, and consequently the maximum degree of B must be t-1.  Thus, we will need t+1 
symbols to represent Λ and t symbols for B. Second, the first element of Λ is always 1 and never needs to be 
explicitly calculated, so the number of symbols needed for Λ is reduced to t.  As a result, the Λ block requires at most 

t full multipliers to compute the term )(1 xBx r
r

r −∗∗∆=Λ  and the B block requires at most t full multipliers to 

compute the term )1)(()( 11
r

r
r

rrr xBB δδ −+∆Λ= −− .  The B block also requires an inverter to calculate ∆-1.  

Finally, the ∆ block will multiply up to t known error symbols by coefficients of Λ requiring another t multipliers.  
Thus, at the worst case a BM stage requires 3t full GF multipliers and a GF inverter. Furthermore, by pipelining the 
BM implementation the total hardware requirement can be reduced significantly because each copy of the BM stage 
computes a fixed level of the iteration and in the beginning and end stages some portions of the computation are 
unnecessary. 

  

2.2.1.3 Recursive Extension Implementation 
At the output of the Berlekamp -Massey stage we obtain all of the coefficients of the error locator polynomial.  

With these values and the known error values we can calculate the unknown terms of the error vector in the 
Recursive Extension (RE) stages.  Each stage uses the t error locator coefficients and the previous three coefficients 
of the error vector to calculate the next symbol, which is fed forward to the next stage.  An RE stage requires t full 

The simulation was clocked at 33mhz and a sequence of five coded data words were introduced in the raw optical 
data 

 

Figure 15: Simulation from FPGA Implementation 
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GF multipliers which operate in parallel on the inputs and a t symbol input GF adder which sums the outputs of the 
multipliers to produce the new symbol.  Our pipelined implementation contains k stages separated by latches (Figure 
14).  At the output of each stage, the error locater coefficients, the previously computed terms of the error vector, and 
the new error vector symbol are latched. The last stage produces the k symbols of the unknown part of the error 
vector.  This is then subtracted from the k data symbols in the received vector V to recover the original vector C. 

2.2.2 Performance Data 
Figure 15 shows the output from a timing annotated simulation of the Spectral RS decoder. This simulation is 

based on the netlist generated from the synthesized, placed, and routed logic exactly as it is downloaded to the FPGA 
for circuit operation. The netlist is annotated by the extraction tool with highly accurate timing data for the specific 
device used and the interconnection paths required. 

(SRS_ROD) input lines. After a pipeline delay of 21 cycles, the corrected data begins to appear one symbol per 
clock cycle on the corrected optical data (SRS_COD) output lines. The remaining traces show a number of 
intermediate values, which are monitored, between the stages of the decoder logic. 

In addition to the timing simulations, we have also verified the functional correctness of the algorithm using a 
software implementation. Figure 16 shows a sequence of images beginning with raw unencoded data, followed in 
sequence by the encoded data, encoded data with errors introduced, decoded and uncorrected data, and corrected 
data. 

decoding (fft)

1. Original

5. Corrected

2. Encoded

3. 1% noise

4. Decoded/Uncorrected

 
 

Figure 16: Sequence of Images Showing Coding, Noise Injection, and Decoding Results 
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2.3 TRANSACTION LEVEL CODES FOR APPLICATION ORIENTED STORAGE 

The third area of our research was an investigation of an approach for dealing with the mismatch between the high 
data transfer rates from page oriented memory and the ability of a processor to do perform useful computations on 
the data in real time. Our solution is based on the addition of computation power at the memory interface such that 
routine computations on specific types of stored data, such as images can be preformed before the data in transferred 
into system memory. This type of access would be inherently application specific and would reduce the computation 
load on the processor to generating and processing a series of transaction with the new, intelligent, memory interface.  

The application that we chose to study was image scene reconstruction and rendering using a ray-tracing algorithm. 
Thus, a scheme might be stored as a collection of objects and object relationships that can be restored into a viewable 
rendered image at read time. Such a system would have wide application in both military and consumer settings. 

2.3.1 What is Ray Tracing 
Ray Tracing is a method that allows you to create photo-realistic images on a computer, dedicated hardware, or mix 
of it. The images are created from a model of the world, viewpoint and the viewing direction and angle. 
 
First the model must be defined. It can contain various kinds 
of primitive objects, including spheres, boxes, planes, etc. 
Complex objects can be built uniting, intersecting and 
subtracting other primitive or complex objects. Every surface 
of an object has specific properties, such as light reflection 
and refraction coefficients, color and text ure. Some special 
objects are created, acting as light sources. All this can be 
done using an interactive modeling system, like a CAD 
package, or by creating a text file that has a programming 
language-like syntax to describe the elements.   
 
The model is the input for the ray tracing system. The system 
computes physical effects of light rays traveling, reflecting 
and refracting through the model environment (Figure 17). 
Finally, the system generates an image as if looking at the 
model from the preset viewpoint. 
 
 
The main drawback of ray tracing is that it is computationally very intensive. Using conventional software programs 
such as Persistence-of-Vision (POV) for tracing images can take anything from a few minutes to many days. 
Therefore custom hardware and firmware solutions are developed to speed up the process. Even greater challenge is 
to apply ray tracing for video generation purposes, where several image frames have to be generated for each second 
of playback. The ultimate challenge is real-time high-definition video with ray tracing. 
 
 

2.3.2 Algorithm 
The ray tracing method generates a two-dimensional image from a set of objects, which represent a world model. 
The result is an image, as it would be realistically seen from a predefined viewpoint, be it an eye of an observer or an 
imaginary camera.  
 
The image is interpreted as a two-dimensional pixel array. Each pixel of the image is computed by tracing a ray of 
light, which hit the view-plane at this pixel. The path of the ray is tested against all the objects for an intersection 
point. If an intersection point is found, any of the following can happen:  

• The ray is absorbed 
• The ray is reflected: a new ray is generated. 
• The ray is refracted: a new ray is generated. 

All the newly generated rays are processed recursively until a limited recursion depth is reached.  

  
 
 
 
 
 
 
 
 
 

Figure 17: Ray tracing concept 
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At the each intersection point new rays can be generated, but also 
the light contributing to the originating pixel is computed (see 
example image in Figure 18). The amount and color of light is 
determined depending on the distance from the light source, light 
source properties and the intersection point surface properties. 
 
The intersection test specifics between a ray and an object 
depend on the type of the object. Essentially a different 
mathematical formula is used for each type of object. 
 
In order to achieve realistic results, high precision computing is 
required; therefore it has to be done using floating-point 
arithmetic as opposed to faster and simpler integer arithmetic. 
 
 
 
 

2.3.3 Complexity Analysis 
To illustrate how demanding the ray tracing implementation can be, consider the following parameters for the ray 
tracing system: 
 

• Image size: 1000x1000 pixels  
• Frame rate: 30 fps 
• Number of primitive objects: 1000 
• Number of light sources: 1 
• Recursion depth of ray tracing: 3 

 
Simplistically speaking, the complexity of the ray tracing method boils down to a number of intersections between a 
ray and an object that are computed. In our example each frame has 10”6 pixels, which leads to the same number of 
outgoing rays. The recursion depth multiplies this number by 3, which leads to 3*10”6 rays in the system. Each ray 
has to be tested against each primitive object for intersection, thus we have 3*10”9 intersection tests per frame. 
Taking in account the frame rate 9*10”10 intersections must be computed every second.  
 
Every intersection is computed differently for different types of objects. Let us say it takes about 10 floating-point 
operations on the average for each computation. The total complexity, which has to be matched, is 9*10”11 
flops/second.  
 
If we assume that modern pipelined processors can issue a floating-point operation each clock cycle, the clock speed 
we need a single processor system to be able to meet our requirements is 900GHz. Moreover, this result was 
obtained on relaxed assumptions. Realistically there are more computations to be performed, such as: 
 

• Searching for objects in the model database. 
• Operations for object temporal maintenance, such as changing their position in time, modeling movement. 
• In realistic models there may be more than 1000 primitive objects. 
• Floating point operations may take more than 1 clock cycle to issue. 
• Operating system overhead. 

 
All this makes ray tracing very compute expensive and unavailable for real time video rendering using current off the 
shelf computers and software. 

 

 

Figure 18: Ray tracing example: 3x3 glass 
ball grid against white wall, one light source. 
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2.3.4 Parallel Processing, Firmware Implementation 
Our approach takes advantage of the high parallelism of operations performed 
by ray tracing. Many pixels and respective ray properties can be computed in 
parallel, independently of each other. We also want to customize the hardware 
for maximally efficient computation. 
 
The model of the world is stored on an optical memory media (Figure 19). 
Once the request for it is made, the appropriate subset of the objects in 
immediate vicinity of the observer is brought to the cache memory for fast 
access. 
 
The ray tracing computation is done on reconfigurable FPGA devices. Since 
the FPGA budget is limited, they are reconfigured to perform intersection test 
for different object type and rays. Since every object has to potentially deal 
with every ray, the reconfiguration will not occur often and will not create a 
bottleneck for the total computation time.  

2.3.5 Simulation Results 
 
The investigation shows that for ray tracing method implementation for intersection test requires an FPGA of size 
467 rows of CLBs, which is also the total pipeline depth by 1010 columns. Since presently there is no FPGA 
available of this size, the system can only be built based on an array of FPGAs. 
 
Ray-tracing software was developed for simulation purposes. The simulation experiments show that the cost of one 
intersection on a Pentium class 300MHz computer is on the average 9.34us. The computer system was also running 
at a faster clock speed than FPGA based, but the computer also had to perform other computations, such as the 
operating system overhead.  
 
Meanwhile, for the FPGA based implementation running at 100MHz clock speed the throughput time of an 
intersection test issue is 10ns. Since every computation is fully pipelined, one test can be issued every clock cycle. 
The FPGA based system outperforms the standard computer/software solution by almost 3 orders of magnitude in 
terms of computation time.  
 
The FPGA system can perform 10”8 intersection computations each second. This is sufficient for the real time video, 
if the given parameters are somewhat relaxed to 100x100 pixel frame, and the number of objects is limited to 100. 
However, using several instances of the FPGA based system can increase these numbers. Developing and 
implementing more efficient algorithms can also improve the performance. For instance, one approach is to 
subdivide space so that not all the objects have to be tested for intersection against each ray. 
 
One challenge of an FPGA  based ray tracing is the large number of FPGAs to accommodate 467x1010 CLB 
requirement. If an FPGA of size 100x100 CLBs is used, then 5x11 array of FPGAs is needed to build it. The 
implementation of such system would have to deal with high power, electronic noise and data communication issues. 
 

 

Figure 19: Approach 
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3 SUMMARY AND CONCLUSIONS 
 
 
Optical memories are good candidates to match requirements for large, fast and reliable data storage. We have 
presented dynamic data modulation encoding technique to attain the reliability with lower spatial overhead than 
conventional methods. Our experiments show utilization up to 81% while recent publications3,4 present 4/9 encoding 
(45% utilization). The 2x2 version of the full enumeration approach seems to be a good candidate for implementation 
due to its utilization of 70% and relatively good performance (only 16 different codes to test for each code block). 
 
Unfortunately the computational complexity of full pattern enumeration algorithm is higher than desired; therefore 
there is a need to search for alternative algorithms and heuristics to speed up the encoding and decoding. We have 
shown one such algorithm achieving 60% utilization.  We assumed existence of “smart” optical readout head for our 
method implementation. We have previously presented a proof of concept of an optically reconfigurable FPGA 7, 
which may serve as a prototype for the readout head. To further improve the performance of the algorithms parallel 
implementations of the encoding and the decoding for mesh type architectures should be investigated. 
 

Another challenging issues in the design of an optical memory system interface is the error detection and 
correction mechanism. This report has presented the approach that was taken in the OE memory hierarchy prototype 
at the University of Pittsburgh. We have chosen to implement a Spectral Reed-Solomon code for its advantages of 
burst error tolerance and for the pipeline processing advantages of it decoding algorithm. The implementation 
technique used a hardware description language and reconfigurable logic blocks thus providing maximum flexibility 
to adapt the implementation to specific materials or error characteristics as optical memory material properties are 
refined. All of the logic necessary to decide a 60-bit, (15,9), SRS code can be implemented in a single device and 
operating at a clock rate of 33 MHz.  

Finally, one approach to handling high data transfer rates is to move computational power to the interface and 
implement a transaction oriented storage system. We have investigated the feasibility of implementing such a system 
for real time rendering of stored scene data. In our investigation the ray tracing method was mapped to the 
architecture based on an array of FPGAs. The computation is distributed over the array of FPGAs. The FPGAs are 
reconfigured as needed to accommodate different computations and compensate for lack of resources. 
 
The simulation experiments of the developed ray tracing software show that the cost of one ray tracing operation 
(intersection) on a Pentium class 300MHz computer is on the average 9.34us. The FPGA based implementation 
running at one third of the speed of the computer the throughput is 10ns. This indicates that FPGA based system 
outperforms the standard computer/software solution by almost 3 orders of magnitude in terms of computation time.  
 
The FPGA system performance is sufficient for the real time video representation of the defined world model for a 
medium size (100x100 pixel) frame and limited number of objects. However, by using several instances of the FPGA 
based system these parameters can be increased due to scalability of the system. Developing and implementing more 
efficient algorithms can further improve the performance.  
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